skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Pan, Zhixin and"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Deep neural networks (DNNs) play an important role in machine learning due to its outstanding performance compared to other alternatives. However, DNNs are usually not suitable for safety-critical applications since DNNs can be easily fooled by well-crafted adversarial examples. To address this issue, spectral normalization (SN) technique was proposed to counter adversarial attacks, which ensures that the trained model has low sensitivity towards the disturbance of input samples. Unfortunately, this strategy requires exact computation of spectral norm, which is computation intensive and impractical for large-scale networks. In this paper, we introduce an acceleration technique for spectral normalization based on Fourier transform and layer separation. The proposed method provides DNNs with promising security protection while maintaining minimized time cost, which turns SN from a theoretically feasible approach to a practically useful framework. Experimental evaluation using autonomous systems demonstrates that our acceleration method is able to significantly improve both time efficiency (up to 60%) and model robustness (61% on average) compared with the state-of-the-art spectral normalization in real-world applications. 
    more » « less